Partypoker官网 - 领先的在线德州扑克平台 - Partypoker

快速发布求购 登录 注册
行业资讯行业财报市场标准研发新品会议盘点政策本站速递

电子科技大学基础院王斌教授团队在JACS上发表最新研究成果

研发快讯 2025年11月25日 10:43:38来源:电子科技大学 18367
摘要近日,电子科技大学研究团队提出一种基于机器学习辅助的过渡金属化合物(TMCs)筛选方法,用于快速发现适用于Li-CO2与Li-Air电池的高效催化剂。

  【仪表网 研发快讯】近日,电子科技大学基础与前沿研究院王斌教授、刘芯言特聘研究员和光电科学与工程学院程建丽教授提出一种基于机器学习辅助的过渡金属化合物(TMCs)筛选方法,用于快速发现适用于Li-CO2与Li-Air电池的高效催化剂。相关论文以“Iterative Machine Learning-Guided Discovery of Transition Metal Compounds as Catalysts for Li-CO2 and Li-Air Batteries”为题,发表在Journal of the American Chemical Society上。基础与前沿研究院2023级博士研究生丁玎为论文第一作者,基础与前沿研究院为论文第一单位。
 
  过渡金属化合物(TMCs)因其丰富的化学组成与可调的电子结构,作为Li-CO2和Li-Air电池的正极催化剂,受到广泛关注。然而,过渡金属候选材料数量庞大,传统的“试错法”材料设计方法不仅耗时漫长,而且研发周期复杂。
 
image.png
  针对这一挑战,研究团队提出了一种迭代式机器学习工作流程,以加速高性能Li-CO2电池正极催化剂的发现,并通过实验验证了其有效性。该方法在机器学习模型的指导下,通过不断补充训练数据集实现模型的自我优化,能够直接预测催化剂的关键性能指标——过电位。
 
  在该体系中,研究人员从15,012种过渡金属化合物中高效筛选出三种具有代表性的TMC催化剂并成功合成。实验验证结果表明,预测模型的平均绝对误差仅为0.106 V,显示出优异的预测精度。其中,Co0.1Mo0.9N表现出最优的催化性能,被进一步用于Li-CO2电池和Li-Air电池的机理分析与电化学性能测试。在50 mA g?¹电流密度下,Co0.1Mo0.9N在Li-CO2和Li-Air电池中分别实现了仅0.55 V和0.65 V的低过电位?;矸治霰砻鳎珻o掺杂有效调控了MoN的电子结构,促进了电子转移,从而显著提升了催化活性。
 
  该研究为利用机器学习加速新型电池催化剂的筛选与设计提供了新的技术路径,也为构建更加高效、可持续的电化学能源体系奠定了基础。

我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

版权与免责声明
  • 凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
  • 合作、投稿、转载授权等相关事宜,请联系本网。联系电话:0571-87759945,QQ:1103027433。
广告招商
今日换一换
新发产品更多+

客服热线:0571-87759942

采购热线:0571-87759942

媒体合作:0571-87759945

  • 仪表站APP
  • 微信公众号
  • 仪表网小程序
  • 仪表网抖音号
Copyright ybzhan.cn    All Rights Reserved   法律顾问:浙江天册律师事务所 贾熙明律师   仪表网-仪器仪表行业“互联网+”服务平台
意见反馈
我知道了